

Einführung des UTM-Koordinatensystems in Baden-Württemberg

Freitag 13. April 2018, Tiefbau 3D+, IHK Reutlingen

Alexander Beetz

Dr.-Ing.

Leiter Software-Entwicklung

- → Warum neue Koordinaten?
- → Grundlagen
- → Was für Probleme können entstehen?
- → Ein Lösungsweg
- → Diskussion

- → Warum neue Koordinaten?
- → Grundlagen
- → Was für Probleme können entstehen?
- → Ein Lösungsweg
- → Diskussion

Warum UTM?

Europa wächst zusammen.

ADV Beschlüsse Von 1991 & 1995

INSPIRE Richtlinie 2007/2/EG

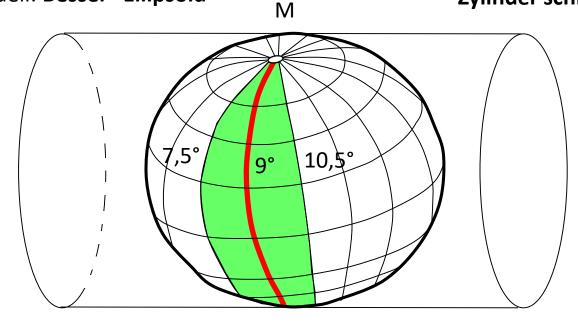
- Vereinheitlichung der Geodaten im Rahmen der europäischen Geodateninfrastruktur
- Einheitliches Koordinatenreferenzsystem für die Bereitstellung von Geodaten in der EU
- Bereitstellung aller von INSPIRE betroffenen Geodaten (z.B. Flurstücke) ab Nov. 2017 in ETRS89/UTM

Quelle: www.adv-online.de & www.lgl-bw.de

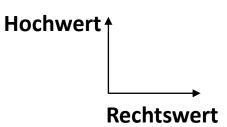
Vorteile für das Kataster

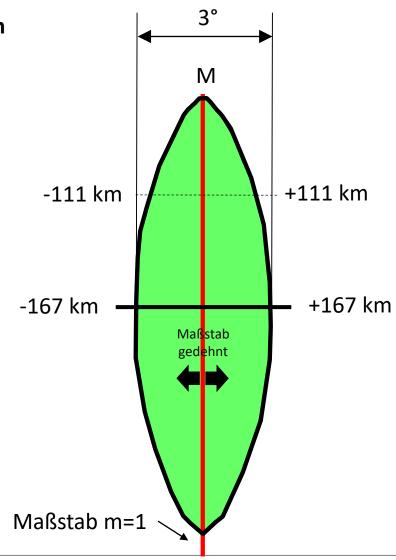
- Mit GNSS kann direkt in ETRS89\UTM gearbeitet werden.
- Festpunkte bzw. Aufnahmepunkte müssen nicht mehr vorgehalten werden.
- Eine Überprüfung vor Ort an Festpunkten kann entfallen.
- Es erfolgt eine Reduktion der bisherigen Netzspannungen auf ein Minimum.
- Eine Transformation von Gauß-Krüger in UTM und umgekehrt wird in BW mit der NTv2-Gitter-Methode durch Onlinedienste gewährleistet.

- → Warum neue Koordinaten?
- → Grundlagen
- → Was für Probleme können entstehen?
- → Ein Lösungsweg
- → Diskussion


Bisher

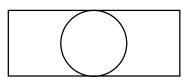
Gauß-Krüger-Projektion

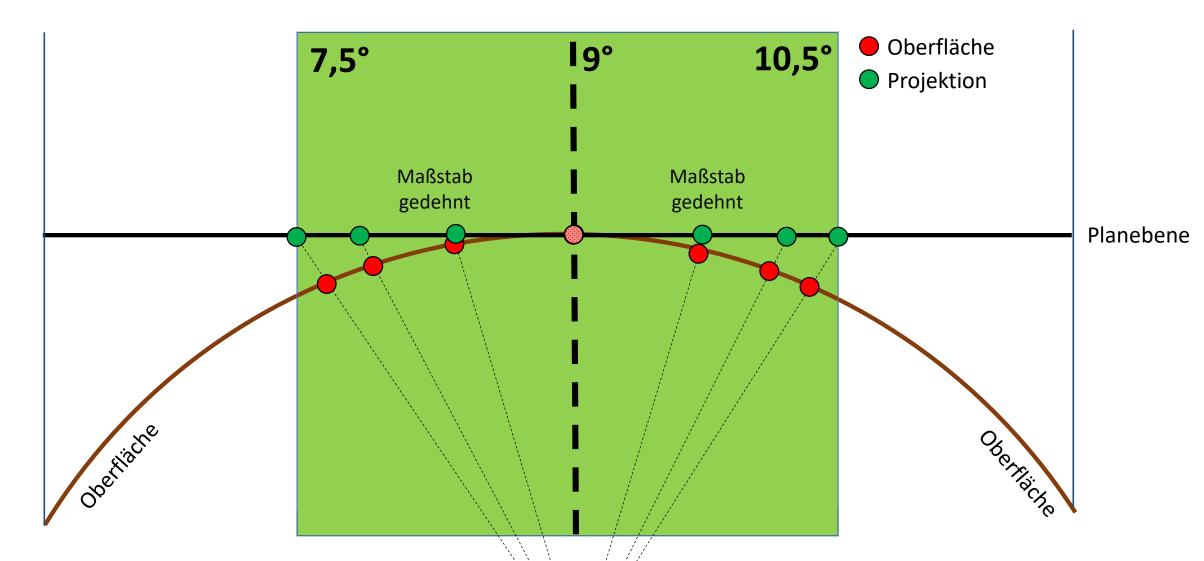

Zylinder schmiegt sich an



Zonenzahl Mittelmeridian Maßstab = 1

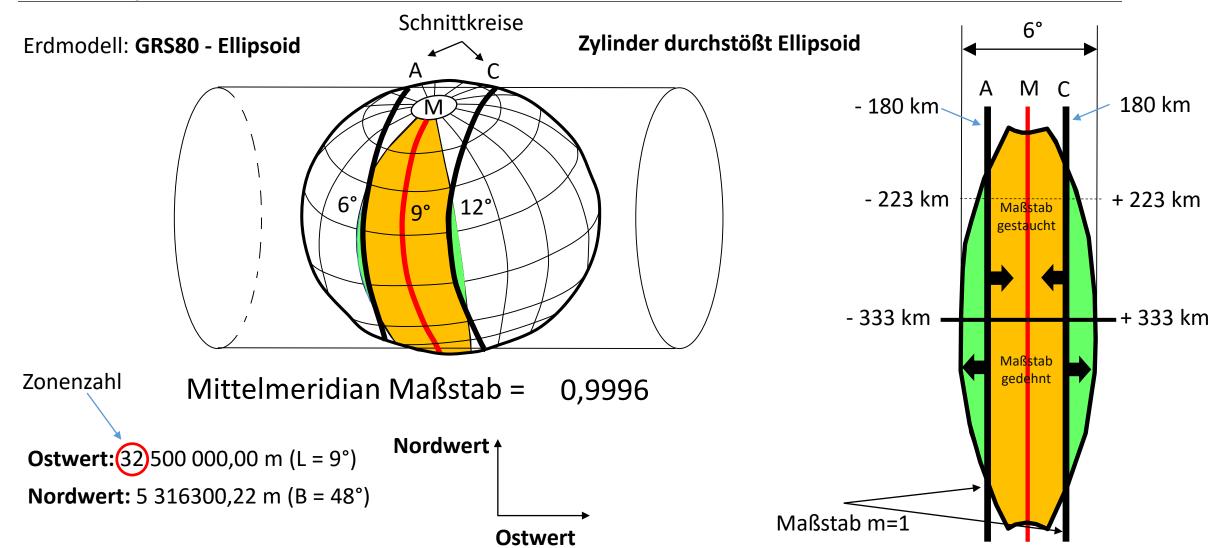
Rechtswert 3500 000,00 m (L = 9°)


Hochwert: 5 317 885,23 m (B = 48°)



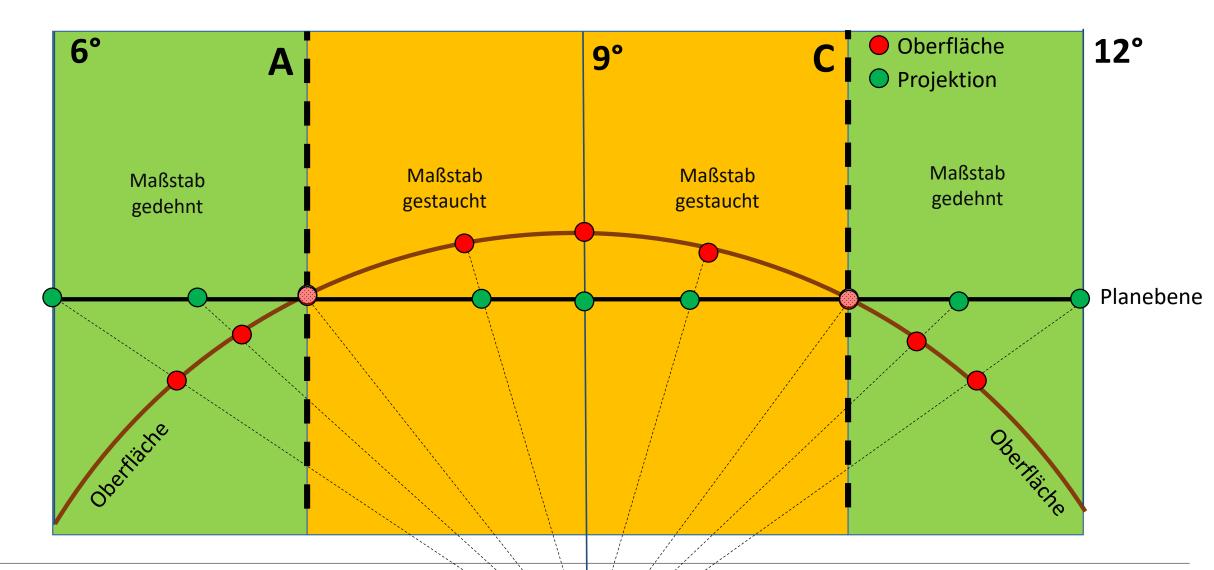
Gauß-Krüger-Projektion

Schnittansicht (vereinfachte Darstellung)



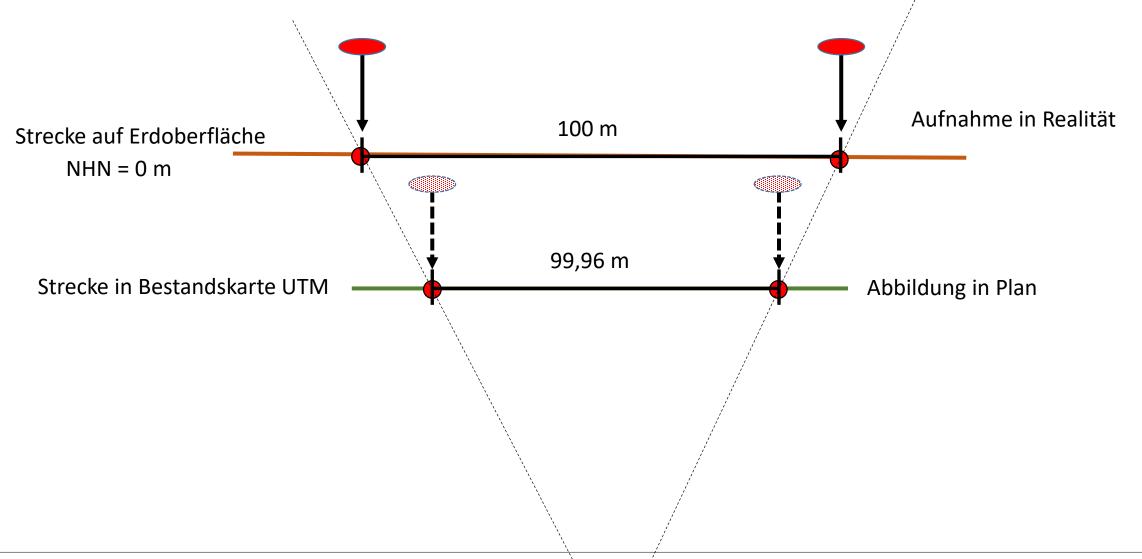
Jetzt

UTM-Projektion



UTM-Projektion

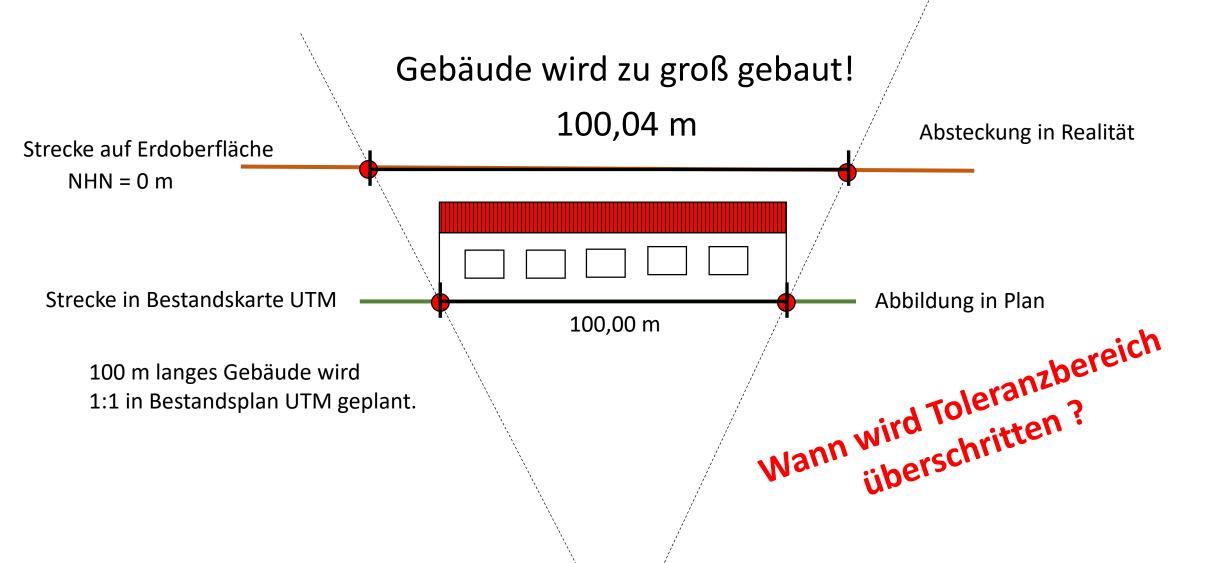
Schnittansicht (vereinfachte Darstellung)



- → Warum neue Koordinaten?
- → Grundlagen
- → Was für Probleme können entstehen?
- → Ein Lösungsweg
- → Diskussion

Arbeiten mit UTM auf 9° östlicher Länge

Aufnahme



Arbeiten mit UTM auf 9° östlicher Länge

Absteckung

Beispiel aus der Praxis

Was nicht passieren sollte...

- Pläne zur Bauausführung wurden digital übergeben.
- Bei Prüfung der Pläne wurde festgestellt: Gebäude wurde 1:1 in UTM-Plan eingezeichnet.
- Bei 300 m Gebäudelänge ergibt sich ein Fehler von ca. 12 cm auf die Gesamtlänge im entsprechenden Gebiet.
- Da die geplante Halle im Stahlbau ausgeführt werden soll sind die zu erwartenden Felder außerhalb der Toleranz.

Bedenken des Auftragnehmers wurden weitelgegebeit

Die Antwort des Vermessers vor Orto den Auftragnehmer:

auf der Grundlage der Verordnung über die Vorordre für Leistungen der Architekten und Ingenieure (HOAI) vom 01.08.2013 und der uns überlassenen Diterlagen geben wir für die o.g. Maßnahme folgendes Angebot ab:

Leistung

- Transformation der Gebäudeplanung in das aktuelle Katastersystem (UTM ETRS89), Abgabe der eligitaler Daten im DWG-Format an das Büro MTS Maschinentechnik Schrode AG
 - Gernzeichnung der 4 Gebäudehauptecken der Haupthalle und der 6 Gebäudehauptecken des Verwaltungsgebäudes in der Örtlichkeit als Referenzpunkte

II) Kosten

Die Kosten betragen 2.200,00 €uro

- → Warum neue Koordinaten?
- → Grundlagen
- → Was für Probleme können entstehen?
- → Ein Lösungsweg
- → Diskussion

Lösungswege

Hypothesen

Was wollen die unterschiedlichen Parteien für einen Maßstab?

Digitaler Auftragnehmer

Am liebsten M 1:1

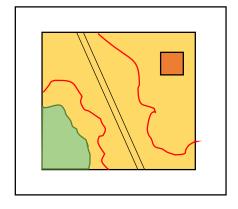
War schon immer so. Alles andere führt zu Verwirrungen. Kann selbst Abstecken und Aufnehmen.

Vermesser

Egal

War schon immer so. Selbst wenn Software Projektionsmaßstab berücksichtigt sind Fehler zu erwarten.

Architekt\Planer


Am liebsten M 1:1

Kann Grundsätzlich mit allem umgehen.

Ein Lösungsweg

Katasteramt

Vermesser

Überführt Bestandsplan
In Maßstab 1: 1
Misst vorher Festpunkte (GNSS) auf und kartiert diese in Plan.
(Eventuell Koordinaten kürzen)
Projektionsmaßstab, Basispunkt und Verschiebung im Plankopf

Wenn gewünscht kann dieser Weg auch umgekehrt erfolgen.

Architekt\Planer

Kann in Maßstab 1:1 planen

Digitaler Auftragnehmer

Kann in Maßstab 1:1 arbeiten Abrechnungspläne können in M 1:1 erstellt werden.

Drei wichtige Vorteile

- Planer und Auftragnehmer können wie gewohnt arbeiten.
- Es gibt keine Verwirrung und Fehler bezüglich unterschiedlicher Maßstäbe.
- Vorgehen ist auch für BIM optimal (keine Probleme durch unterschiedliche Koordinatensysteme).

Ein sauberer Weg!

Diskussion

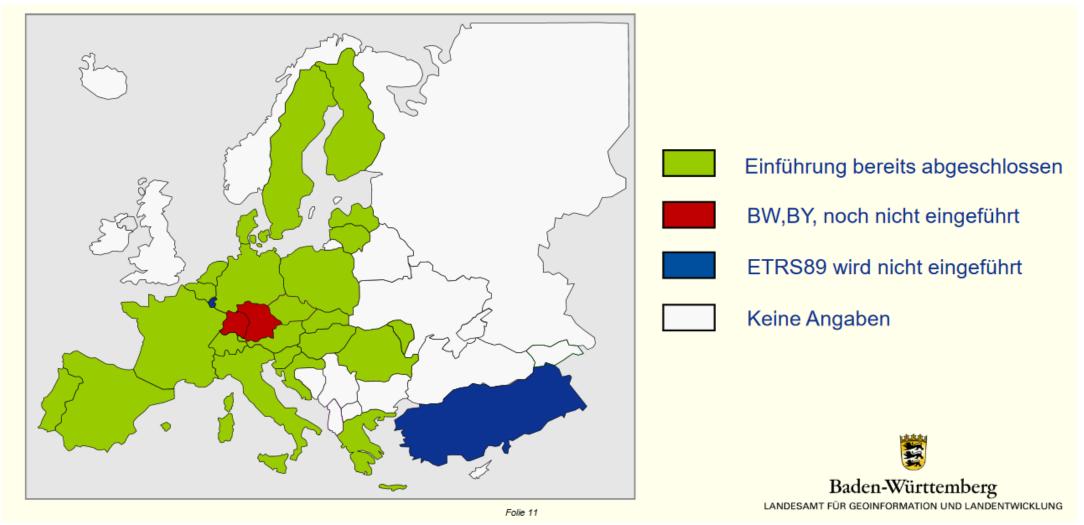
Die Landesvermessung hilft

Online-Tool für die Umrechnung GK<->UTM

Startseite » Geoinformation » Geodätischer Raumbezug » Koordinatentransformation			
Koordinatentransformationsdienst			
Koordinatentransformationsdienst: DHDN/Gauß-Krüger > ETRS89/UTM > DHDN/Gauß-Krüger Mit diesem Koordinatentransformationsdienst können Gauß-Krüger-Koordinaten nach UTM und zurück transformiert werden.			
Bitte wählen Sie die gewünschte Genauigkeit aus BWTA2017 (innerhalb Baden-Württemberg, passgenau zu ALKIS-Daten) BETA2007 (Deutschland, passgenau zu ATKIS-Daten)			
Bitte wählen Sie das Quell-Koordinatensystem aus © Gauß-Krüger (GK3) ○ UTM32			
Bitte wählen Sie die Anzahl zu transformierende Koordinaten aus eine Koordinate mehrere Koordinaten (Datei) Beispiel Datei.csv			
Rechtswert [m]			
Hochwert [m]			
☐ Ich erkenne die Allgemeine Geschäfts- und Nutzungsbedingungen an.			
Ausführen			

https://www.lgl-bw.de/lgl-internet/opencms/de/05_Geoinformation/Raumbezug/Koordinatentransformation/

Unterschiede GK und UTM



Merkmale	GK-Abbildung	UTM-Abbildung
Ellipsoid	Bessel-Ellipsoid	GRS80-Ellipsoid
Ausdehnung der	3°-Meridianstreifensystem,	6°-Zonensystem, Aufzählung in
Abbildungssysteme	Aufzählung in östlicher Richtung	östlicher Richtung ab dem 180.
	ab dem Greenwich-Nullmeridian	westlichen Längengrad
Maximale Längenverzerrung am Rand	1,00012 (12 cm/km)	1,00015 (15 cm/km)
Längenverzerrung des Mittelmeridians	1 (0 cm/km)	0,9996 (-40 cm/km)
Abbildungseigenschaften	längentreue Abbildung des Hauptmeridians	2 längentreue Parameterlinien, verkürzte Abbildung des Mittelmeridians
Bezeichnung der Koordinaten	Rechtswert und Hochwert	Ostwert (East) und Nordwert (North)
Einheit der Koordinaten	Meter	Meter
Versetzung des Mittelmeridians	500.000 m	500.000 m

Quelle: www.adv-online.de

Umsetzung von ETRS89/UTM in Europa

Quelle: www.lgl-bw.de

Auswirkung der Projektionsverzerrung

$$M_{UTM} = 0.9996 \cdot \left(1 + \frac{(E_{UTM} - 500 \, km)^2}{2 \cdot R^2}\right)$$

(Näherungsformel)

Maßstab M = 1

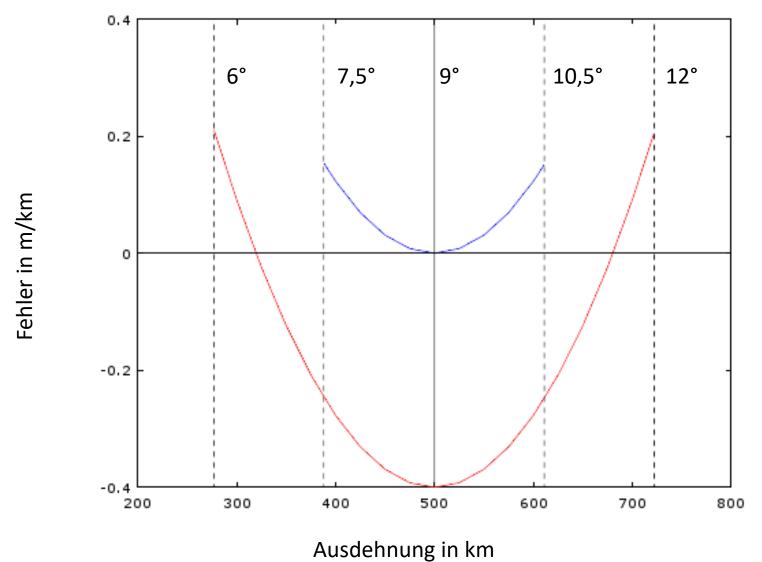
$$Hochwert M1 = \frac{N_{UTM}}{M_{UTM}}$$

Rechtswert
$$M1 = \frac{E_{UTM}}{M_{UTM}}$$

 M_{UTM} ... Projektionsmaßstab UTM

 E_{UTM} ... Mittlerer Ostwert UTM in km ohne Zonenzahl

R ... Erdradius 6380 km


Kann zur Skalierung im CAD verwendet werden.

Auswirkung der Projektionsverzerrung

GK

UTM

